Automated and Autonomous Driving Regulation under uncertainty

autonomous driving

 

Executive summary

Many cars sold today are already capable of some level of automated operation, and prototype cars capable of driving autonomously have been - and continue to be - tested on public roads in Europe, Japan and the United States. These technologies have arrived rapidly on the market and their future deployment is expected to accelerate.

Autonomous driving promises many benefits: improved safety, reduced congestion and lower stress for car occupants, among others.

Authorities will have to adapt existing rules and create new ones in order to ensure the full compatibility of these vehicles with the public’s expectations regarding safety, legal responsibility and privacy. This report explores the strategic issues that will have to be considered by authorities as more fully automated and ultimately autonomous vehicles arrive on our streets and roads. It was drafted on the basis of expert input and discussions amongst project partners in addition to a review of relevant published research and position papers.

What we found Automated driving technologies are mostly mature and some autonomous driving is here already Most of the core technologies required for fully autonomous driving are available today, many are mature and some are already being deployed in commercially available vehicles. Self-driving cars seem a near-term possibility but their range of capabilities is unclear Many major car manufacturers and several technology firms have announced the commercial production of highly automated vehicles starting in 2017. Many observers expect there to be a wide range of such models on the market by 2030, and some of these may be self-driving. It is not clear at present, however, to what extent these vehicles will be capable of self-driving in all circumstances.

Road safety is expected to improve with vehicle automation.

But this effect remains untested at a large scale and may not be immediate or linear Most crashes involve human error. If greater autonomous operation reduces or eliminates these errors, then benefits for road safety may be substantial. However, most driving involves no crashes. The real safety test for autonomous cars will be how well they can replicate the crash-free performance of human drivers. While results from early prototypes are promising, new types of crashes may emerge as autonomous technologies become more common – for instance crashes resulting from the car handing control back to the driver or from mixing autonomous and conventional vehicles. There are many possible technological configurations for autonomous driving The move towards autonomous driving may involve different technological configurations. Some rely on greater connectivity between cars and between cars and infrastructure. These entail the development of common communication protocols, encrypted security standards and investment in new types of infrastructure or upgrading those which currently exist. Others rely more on vehicle-embarked sensor platforms and require little infrastructure investment. Both models require precise digital representations of their environment, including high definition maps.

There are two incremental paths towards full automation

The first path involves gradually improving the automation in conventional vehicles so that human drivers can shift more of the dynamic driving task to these systems. The second path involves deploying vehicles without a human driver in limited contexts and then gradually expanding the range and conditions of their use. The first path is generally embraced by traditional car manufacturers and the second by new entrants.

read more : https://www.itf-oecd.org/sites/default/files/docs/15cpb_autonomousdriving.pdf